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1 Definitions

Be able to write precise definitions for any of the following concepts (where appropriate: both in
words and in symbols), to give examples of each definition, and to prove that these definitions
are satisfied in specific examples. Wherever appropriate, be able to sketch examples for each
definition. What is/are:

1. iterated integral? How many such iterated integrals are there?
2. a type I region in the plane? A type II ? What are they used for?
3. switching the order of integration?
4. triple integrals? geometric/physical interpretation?
5. spherical coordinates?
6. change of variables? the Jacobian?
7. polar change of variables? spherical change of variables?
8. vector fields? physical examples of vector fields?
9. conservative vector fields? testing whether a function is conservative?

10. the line integral of a scalar function? the geometric interpretation? arc length?
11. the line integral of a vector function? some physical interpretations?
12. the fundamental theorem for line integrals? path independence of a line integral?
13. a connected region in the plane? a simply connected region in the plane?
14. the boundary of a region? a positively-oriented boundary?
15. Green’s Theorem?

1These lecture notes are copyrighted and provided for the personal use of Fall 2020 Math 110 students only. They
may not be reproduced or posted anywhere without explicit written permission from Prof. Zvezdelina Stankova.
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2 Theorems

16. the curl of a vector field, ∇× ~F? irrotational vector fields?
17. the divergence of a vector field, ∇ ◦ ~F? incompressible vector fields?
18. the Laplace equation? a harmonic function?
19. a parameterized surface? tangent planes for parametric surfaces? the normal vector of a

surface?
20. the surface area?
21. the surface integral of a scalar function? some physical interpretations?
22. orientable surfaces? an orientation of a surface?
23. the surface integral of a vector function? some physical interpretations?
24. Stokes’ Theorem?
25. the Divergence Theorem?

2 Theorems

Be able to write what each of the following theorems (laws, propositions, corollaries, etc.) says.
Be sure to understand, distinguish and state the conditions (hypothesis) of each theorem and its
conclusion. Be prepared to give examples for each theorem, and most importantly, to apply each
theorem appropriately in problems. The latter means: decide which theorem to use, check (in
writing!) that all conditions of your theorem are satisfied in the problem in question, and then
state (in writing!) the conclusion of the theorem using the specifics of your problem.

1. Fubini’s Theorem: If f(x, y) is continuous on a rectangleR = [a, b]×[c, d] then
∫∫
R f(x, y) dA =∫ b

a

∫ d
c f(x, y) dy dx =

∫ d
c

∫ b
a f(x, y) dx dy.∫∫
D f(x, y) dA =

∫ b
a

∫ h(x)
g(x) f(x, y) dy dx.

2. Change of Variables: If x = f(u, v) and y = g(u, v) have continuous partial derivatives,
and these functions give a one-to-one mapping from a region S in the uv-plane to the region
R in the xy-plane, then∫∫

R h(x, y) dA =
∫∫
S h(f(u, v), g(u, v))

∣∣∣∣fu fv
gu gv

∣∣∣∣ du dv.

3. The Three-Dimensional Jacobian: If x = f(u, v, w), y = g(u, v, w), and z = h(u, v, w)
all have continuous partial derivatives, then the Jacobian is given by∣∣∣∣∣∣

fu fv fw
gu gv gw
hu hv hw

∣∣∣∣∣∣ = fugvhw + fvgwhu + fwguhv − fugwhv − fvguhw − fwgvhu.

4. Jacobian for Spherical Change of Variables: If we set x = ρ sinφ cos θ, y = ρ sinφ sin θ,

and z = ρ cosφ, then the Jacobian is
∣∣∣∂(x,y,z)∂(ρ,θ,φ)

∣∣∣ = ρ2 sinφ.

5. The Fundamental Theorem for Line Integrals: Suppose C is a smooth curve that
is parameterized by ~r(t) where a ≤ t ≤ b, and ~F is a continuous vector function that is
conservative. Then if ~F = ∇f ,∫

C
~F ◦ d~r = f(~r(b))− f(~r(a)).

6. The Converse of FTL: Suppose ~F is a continuous function whose domain is open and
connected. Also suppose that whenever C1 and C2 are two smooth curves with the same
start point and end point, we have

∫
C1

~F ◦ d~r =
∫
C2

~F ◦ d~r. Then ~F is conservative.

7. A Necessary Condition for Being Conservative: Suppose ~F (x, y) = 〈P (x, y), Q(x, y)〉
has continuous partial derivatives. If there is some point in the domain where ∂P

∂y 6=
∂Q
∂x , then

~F is not conservative.
8. A Sufficient Condition for Being Conservative: Suppose ~F (x, y) = 〈P (x, y), Q(x, y)〉

has continuous partial derivatives on an open, simply-connected domain. If ∂P∂y = ∂Q
∂x at every
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2 Theorems

point in the domain, then ~F is conservative.
9. Green’s Theorem: Let ~F (x, y) = 〈P,Q〉 have continuous partial derivatives and no holes on

the domain D. Suppose this domain is a region in the plane whose boundary is the piecewise
smooth, simple curve C with positive orientation, then∫

C
~F ◦ d~r =

∫∫
D

(
∂Q
∂x −

∂P
∂y

)
dA.

10. A Necessary Condition for Being Conservative in 3D: Suppose ~F (x, y, z) = 〈P,Q,R〉
has continuous partial derivatives. If there is some point in the domain where curl ~F 6= 0,
then ~F is not conservative.

11. A Sufficient Condition for Being Conservative in 3D: Suppose ~F (x, y, z) has contin-
uous partial derivatives on an open, simply-connected domain in R3. If curl ~F = 0 on the
domain, then ~F is conservative.

12. An Exact Sequence: For the following, suppose that all functions have continuous partial
derivatives. There are three different operations that we can apply to functions in three-
dimensions. Note what type of function (scalar or vector) each operation inputs and outputs.

f(x, y, z) ~F (x, y, z) ~G(x, y, z) g(x, y, z)
gradient curl divergence

i) Consecutive Operations: If we start in one of the above boxes, and perform two of
the operations in a row, we will end up with the zero function.
� The curl of the gradient of f(x, y, z) equals 〈0, 0, 0〉.
� The divergence of the curl of ~F (x, y, z) equals 0.

ii) Moving Backwards: If we start with a function in one of the above boxes whose
domain is simply-connected, and performing the operation to the right gives us the zero
function, then our original function was the image of something coming from the left.
� Suppose the domain of ~F is simply-connected. If the curl of ~F is 〈0, 0, 0〉, then there

is some f such that ∇f = ~F .
� Suppose the domain of ~G is simply-connected. If the divergence of ~G is 0, then there

is some ~F such that curl ~F = ~G.
iii) The Fundamental Theorem of Calculus: The integral of the derivative of a function

over a domain equals the integral of the function over the boundary of the domain.
� FTL: If ∇f = ~F , and C is a smooth curve in R3 starting at ~a and ending at ~b, then∫

C
~F ◦ d~r = f(~b)− f(~a).

� Stokes’ Theorem: If curl ~F = ~G, and S is an oriented, piecewise smooth surface
with positively-oriented boundary C, then∫∫

S
~G ◦ d~S =

∫
C
~F ◦ d~r.

� The Divergence Theorem: If div ~G = g, and E is a solid region in R3, whose
boundary is the positively-oriented surface S, then∫∫∫

E g dV =
∫∫
S
~G ◦ d~S.
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3 Problem Solving Techniques

3 Problem Solving Techniques

1. Switching the order of integration: Suppose we are trying to calculate
∫ b
a

∫ g2(y)
g1(y)

f(x, y) dx dy,
but for some reason trying to integrate with respect to x first is difficult. Then as long as
f(x, y) is continuous on our region, we can switch the order of integration, and find the partial
antiderivative with respect to y first. However, we must be sure that we are changing the
bounds of integration correctly.

1. Draw the original region in the plane.
2. In the above example, we started by slicing horizontally from x = g1(y) to x = g2(y).

So switching the order of integration means we will be slicing vertically (so the integral
will have dy dx).

3. Draw some vertical lines in your region. Is there a single function y = h1(x) that
describes the bottom of each of these lines? If not, we will have to break the region into
multiple parts.

4. Similarly for the top of our region. Is there a single function y = h2(x) that describes
the top of our vertical lines across the region? Maybe for part of the region, the top
bound looks like a line, while elsewhere it looks like a parabola, etc...

5. Break the x-axis into different intervals [c, d] based on where your vertical lines have a
common lower and upper bound. And then our final integral will have a different part

for each of these pieces that looks like:
∫ d
c

∫ h2(x)
h1(x)

f(x, y) dy dx.

2. Change of Variables: Suppose we wish to integrate
∫
R f(x, y) dA, but maybe finding an-

tiderivatives is tricky, or the region is hard to work with. We can use a multivariable version
of u-substitution to simplify things, using u = u(x, y) and v = v(x, y).

1. We want to solve for x as a function of u and v, and the similarly solve for y as a function
of u and v. So we get two functions x(u, v) and y(u, v).

2. We need to translate the region R from the xy-plane into our new variables. Like always,
start by drawing the region. The boundaries of the region will give us inequalities for
points in the region. For instance, we might have things like y ≥ 3x+ 1 or x ≤ y2. Then
we plug in x(u, v) and y(u, v) to turn these into inequalities in terms of u and v. Finally,
we will solve for u or v and sketch what our new region S looks like in the uv-plane.

3. We also need to translate dA into the new coordinates. This is done by calculating the

Jacobian. We make a 2 × 2 matrix of partial derivatives

∣∣∣∣xu xv
yu yv

∣∣∣∣, and then compute

the determinant xuyv − xvyu. Make sure in this step that you are working with x and y
as a function of u and v (and not the other way around).

4. We can put everything together to get a double integral that we can (hopefully) evaluate
directly:

∫∫
S f(x(u, v), y(u, v)) (xuyv − xvyu) du dv.

3. Computing the line integral of a scalar function: Suppose we have some function
f : R2 → R, a curve in the plane C, and we wish to calculate

∫
C f(x, y) ds.

1. Find a parameterization for the curve C, say ~r(t) = (x(t), y(t)) and t goes from a to b.

2. Use this to determine ds =
√

(x′(t))2 + (y′(t))2 dt.
3. Then we can plug everything into our original integral to reduce it to just a single-variable

integral in terms of our parameter t:∫
C f(x, y) ds =

∫ b
a f(x(t), y(t))

√
(x′(t))2 + (y′(t))2 dt.

One important example of such a line integral is when f(x, y) = 1. Then
∫
C 1 ds gives us the

arc length of C.
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3 Problem Solving Techniques

4. Computing the line integral of a vector function: Suppose we have some function
~F : R2 → R2, a curve in the plane C, and we wish to calculate

∫
C
~F ◦ d~r.

a) Check whether ~F is conservative. If there are no holes in the domain of ~F , then we
can check whether the y-partial derivative of the first component equals the x-partial
derivative of the second component.

b) If ~F is conservative, find the potential function f (so that ∇f = ~F ). Then we can use
the Fundamental Theorem to calculate the integral as f(end point)− f(start point).

c) If ~F is not conservative, we have to take a “brute force” approach and reduce it down
to a single-variable integral.

i) Parameterize the curve C as some ~r(t) = 〈x(t), y(t)〉 where t goes from a to b. (Make
sure you keep track of the curve starting at t = a and ending at t = b, otherwise
you might get an extra negative sign).

ii) Using the chain rule, we can calculate d~r = ~r′(t) dt.
iii) Then we can plug everything in and get a basic integral:∫

C
~F ◦ d~r =

∫ b
a
~F (x(t), y(t)) ◦ 〈x′(t), y′(t)〉 dt.

iv) Take the dot product, and then evaluate this integral as you would in a single-
variable calculus course.

5. Using Green’s Theorem to Calculate a Line Integral: Suppose we were trying to
calculate

∫
C
~F ◦ d~r, but we are stuck when we try to evaluate the integral. We can use

Green’s Theorem to turn this into a double integral that might be easier to solve.
1. Check that we can use Green’s Theorem. We need the curve C to be enclosing some

region D. We also need to make sure our function has no holes in the region D, as other-
wise trying to calculate the double integral over this region doesn’t work. Additionally,
the curve should be positively-oriented. If the region enclosed by C is to the right of the
curve (i.e. it is negatively-oriented), then we will multiply our final answer by -1.

2. If ~F (x, y) = 〈P (x, y), Q(x, y)〉, calculate the mixed partial derivatives and subtract to
find Qx − Py.

3. Evaluate the double integral
∫∫
DQx − Py dA.

6. Using Green’s Theorem to Calculate a Double Integral: We can also use Green’s
Theorem in the opposite direction. When we have a double integral that is tricky to solve,
we can try to turn it into a line integral that could be easier. So suppose we are trying to
find

∫∫
D f(x, y) dA.

1. Make sure that it makes sense to use Green’s Theorem. In particular, the region D
should have a boundary made up of simple closed curves. And for each of these curves,
make sure you choose the positive-orientation, i.e. the region should always be to the
left of the curve.

2. We want to find an “antiderivative” for f(x, y). That is, we want some vector function
~F (x, y) = 〈P,Q〉 such that f(x, y) = Qx−Py. There could potentially be many different
vector functions that work, and all of them will work (although some might be easier
than others).

3. Then we have our boundary curve(s) C and a vector function ~F (x, y), and we can
calculate

∫
C
~F ◦ d~r as before: parameterize C, etc...

7. Tangent Planes and Normal Vectors for Parametric Surfaces: Let surface S be given
by the parametrization

~r(u, v) = 〈x(u, v), y(u, v), z(u, v)〉

and let S pass throught point P with position vector ~r(u0, v0). Then the tangent vectors at
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3 Problem Solving Techniques

P to the two grid curves of S through P are given by

~ru =
∂

∂u
~r(u, v) =

〈
∂x

∂u
(u0, v0),

∂y

∂u
(u0, v0),

∂z

∂u
(u0, v0)

〉
~rv =

∂

∂v
~r(u, v) =

〈
∂x

∂v
(u0, v0),

∂y

∂v
(u0, v0),

∂z

∂v
(u0, v0)

〉
The tangent plane TP to S at P is then given by the standard parametrization of a plane
passing through P and containing two non-parallel vector ~ru and ~rv. The normal vector ~n to
S at P is the cross product of the above two vectors:

~NP (S) = ~ru × ~rv.

8. Computing the Surface Integral of a Scalar Function: Suppose we have a two-
dimensional surface S inside of R3, and we have some scalar function f(x, y, z). Then we
can find the “total” amount of f over our surface by computing

∫∫
S f(x, y, z) dS.

1. Like always, we need to parameterize the domain S. In this case, since our domain
is a two-dimensional surface, we will have two parameters. We will get something like
~r(s, t) = 〈x(s, t), y(s, t), z(s, t)〉. Also there will be some region D that s and t are allowed
to be in as part of this parameterization.

2. Then we need to change the dS in our original integral to this new coordinate system
(much like when we change variables using the Jacobian).
a) Find the partial derivatives of your parameterization, ~rs and ~rt.
b) Calculate the cross product ~rs × ~rt. Recall, this is a normal vector for our surface.
c) Find the length of this normal vector.

3. Now we can plug everything in and calculate the double integral like we would normally:∫∫
D f(x(s, t), y(s, t), z(s, t))|~rs × ~rt| dA.

9. Computing the Surface Integral of a Vector Function: Suppose we have a two-
dimensional surface S inside of R3, and we have some vector function ~F (x, y, z). We want to
compute

∫∫
S
~F ◦ dS.

1. Parameterize the surface S by ~r(s, t) = 〈x(s, t), y(s, t), z(s, t)〉 and (s, t) is in D. In this
situation, the orientation of our surface will be important.

2. Calculate the normal vectors on our surface using the parameterization. (Remember
there are two directions that a normal vector to a surface could point; these are the
possible orientations for our surface.) To calculate the normal vector:
a) Calculate the partial derivatives of the parameterization, ~rs and ~rt.
b) Take the cross product of these ~rs×~rt. Recall, this is a normal vector for our surface.
c) Then we will have dS = ~rs × ~rt dA.

3. Finally we can plug everything and evaluate the basic double integral:∫∫
D
~F (x(s, t), y(s, t), z(s, t)) ◦ (~rs × ~rt) dA.

10. Calculating Curl: If ~F = P~i+Q~j + R~k is a vector field on R3 and the partial derivatives
of P,Q,R exist, then

curl ~F = ∇× ~F =

∣∣∣∣∣∣
~i ~j ~k
∂
∂x

∂
∂y

∂
∂z

P Q R

∣∣∣∣∣∣ =

(
∂R

∂y
− ∂Q

∂z

)
~i+

(
∂P

∂z
− ∂R

∂x

)
~j +

(
∂Q

∂x
− ∂P

∂y

)
~k.

Note that curl ~F is another vector field associated to the original vector field ~F .
11. Finding a Potential Function for ~F : Suppose we have some ~F (x, y) = 〈P,Q〉 and we are

trying to find a potential function so that ∇f = ~F .
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4 Problems for Review

1. Check that our task is even possible. Not every vector function is conservative, so we
don’t want to waste our time trying to find something that doesn’t exist. If the domain
of ~F is simply connected (for instance, maybe the domain is all of R2), then we can just
check whether or not Qx − Py = 0.

2. Once we know that ~F is conservative, we can start trying to find a potential function,
working one component at a time. For instance, it should be the case that ∂f

∂x = P ,
so we can take the x-partial antiderivative of P as our first guess for f . But we must
remember the constants when we take antiderivatives, and in this case, anything with
just y in it will act like a constant (with respect to x).

3. So we find the x-partial antiderivative of P as f(x, y)+c(y) (where f will be explicit, but
we don’t know c(y) yet). Then the next thing we know is that the y-partial derivative of
our guess should be equal to Q. So we can calculate ∂

∂y (f(x, y) + c(y)) = Q, and then

we will be able to solve for ∂c
∂y .

4. Then finally, we can take the y-antiderivative of cy(y) (from the previous part), and this
will tell us what c(y) should look like.

4 Problems for Review

The exam will be based on Homework, Lecture, Section and Quiz problems. Review all homework
problems, and all your classnotes and discussion notes. Such a thorough review should be enough
to do well on the exam. If you want to give yourself a mock-exam, select 4 representative problems
from various HW assignments, give yourself 40 minutes, and then compare your solutions to the
HW solutions. If you didn’t manage to do some problems, analyze for yourself what went wrong,
which areas, concepts and theorems you should study in more depth, and if you ran out of time,
think about how to manage your time better during the upcoming exam.

4.1 Multiple Integrals

1. True/False practice:
a) For a continuous function f , the value

∫∫
R f(x, y) dA equals the area of the region R.

b) For a continuous function f , the value
∫∫
R f(x, y) dA equals the average value of f on

the region R.
c) If f(x, y) is an odd function, then

∫∫
R f(x, y) dA = 0.

d) Every region in the plane is either Type I or Type II.
2. For the given region R, set up the integral

∫∫
R f(x, y) dA for both orders of integration.

a) R = {(x, y) | 0 ≤ x ≤ 1,−x ≤ y ≤ x}.
b) R is the sector of the unit circle between the x-axis and 30 deg counterclockwise from

the x-axis.
c) R is bounded by the lines x = 2, x = −2, y = 2, y = −2, xy = 1 and xy = −1.

3. Find the average value of f(x, y) = x2y over the triangle whose end points are (0, 0), (1, 2)
and (2, 1).

4. Suppose D is the region in R3 given by: x ≥ 0, y ≥ 0, z ≥ 0, x ≤ y and x+ y + z ≤ 1. Find
the volume of this region using a triple integral.
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4 Problems for Review

4.2 Change of Variables

1. True/False practice:
a) When evaluating

∫ 1
−1 f(x) dx, if we use the u-substitution u = x2, we can see that the

integral
∫ 1
−1 f(x) dx =

∫ 1
1 f(
√
u) 1

2
√
u
du = 0, since the upper and lower bound are the

same.
b) By changing to spherical coordinates, we can calculate the volume of the unit sphere as∫ 1

0

∫ 2π
0

∫ 2π
0 ρ2 sinφdθ dφ dρ.

2. Sketch the region bounded by r = cos θ where −π
2 ≤ θ ≤

π
2 . Find the integral of f(x, y) = 1

x
on this region.

3. Suppose D is the disc centered at the origin with radius a. What is the average distance from
the origin of a point on this disc?

4. Suppose R is the parallelogram whose corners are (−1,−1), (1, 0), (0, 1), and (2, 2). Find a
change of variables that transforms the region to the unit square [0, 1]× [0, 1]. Use this change
of variables to evaluate

∫∫
R x

2 dA.

5. Find
∫ 1
0

∫ 1
0
x−y
x+y dA using the change of variables u = x− y and v = x+ y.

6. The density of a block of metal is given by f(x, y, z) = 1√
x2+y2

. If you cut out a solid by

taking the top half of the unit sphere centered at the origin, what is the total mass of the
piece you end up with?

4.3 Vector Fields

1. True/False practice:
a) The gradient of the gradient of f(x, y) is always equal to 0.
b) If ~F (x, y) is a vector field, there is at most one function f so that ∇f = ~F .
c) The gradient of f(x, y) always points parallel to the level curves of f(x, y).

2. For the given function f , find the domain, sketch 5 level curves and sketch ∇f .
a) f(x, y) = x2 − y2.
b) f(x, y) = lnxy.
c) f(x, y, z) = xz.

3. If f(0, 0) = 2 and ∇f(x, y) = 〈exy − y2 + x+ 2, exy − 2yx+ 3〉, estimate f(0.1, 0.1).
4. For the following vector fields, determine whether they are conservative. If it is conservative,

find a potential function.
a) ~F (x, y) = 〈x2, y2〉.
b) ~F (x, y) = 〈y2, x2〉.
c) ~F (x, y, z) = 〈8xyz3, 4x2z3 + 2yz, 12x2yz2 + y2 + 1〉.
d) ~F (x, y, z) = 〈6x2yz, 2x3z, 3x3y〉.

4.4 Line Integrals

1. True/False practice:
a) If we can find two different paths between the same points that give us different values

for
∫
C
~F ◦ d~r, then we can conclude that ~F is not conservative.

b) If C is a curve between (1, 1) and (2, 3) then
∫
C f ds will change signs depending on

which point we choose as the start or end of our parameterization.
c) If we parameterize the curve C by moving twice as fast as someone else, then our

∫
C
~F ◦ d~r

will be twice as big as theirs.
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4 Problems for Review

2. Find
∫
C f ds.

a) f(x, y) = x2y and C is the line from (0, 0) to (2, 1).
b) f(x, y) = ex and C is the bottom half of the unit circle between (−1, 0) and (1, 0).
c) f(x, y, z) is the distance from the origin and C is the helix given by 〈cosπt, sinπt, t〉 from

(1, 0, 0) to (−1, 0, 1).
3. Find

∫
C
~F ◦ d~r.

a) F (x, y) = 〈x2, 2xy〉 and C is the line from (−1, 1) to (2, 3).
b) F (x, y) = 〈ex, ey〉 and C is the top half of the unit circle from (1, 0) to (−1, 0).
c) F (x, y, z) = 〈y, z, x〉 and C is the intersection of the surfaces z = x2 +y2 and x = y from

the origin to (1, 1, 2).
4. A particle travels along the level curve C given by sinx + ey = 7 from the point (0, ln 7) to(

pi
2 , ln 6

)
. Find

∫
C cosx dx+ ey dy.

5. The height of a mountain is described by h(x, y) = x2y+ exy + x. Suppose some walks along
the path C from (0, 0) to (2, 2) determined by making sure at every point, the person is
moving in the direction where the slope is the steepest. What is

∫
C ∇h ◦ d~r?

4.5 Green’s Theorem

1. True/False practice:
a) If ~F (x, y) has a hole at the origin, then Green’s Theorem will fail for any region in the

plane.
b) A positively-oriented curve is one that travels counterclockwise in the plane.

2. Suppose C is the triangular path moving from (0, 0) to (2, 1) to (1, 2) and then back to the
origin. Using Green’s Theorem, find

∫
C〈e

x sinx+ y, y2 − x2〉.
3. Find

∫
C x

2y dx − xy2 dy where C is the circle of radius 2 centered at the origin traveling
clockwise.

4. Suppose R is the region between y = sinx and the x-axis from x = 0 to x = π. Use Green’s
Theorem to find

∫∫
R 2y dA.

5. Suppose C is the ellipse given by 25x2 + 9y2 = 1 and ~F (x, y) = 〈y ln(x2 + y2), x ln(x2 + y2)〉.
(Hint: It’d be much easier to integrate this over the unit circle than the ellipse...)

4.6 Surface Integrals

1. Suppose S is the triangle formed by the plane x + y + z = 1 between the points (1, 0, 0),
(0, 1, 0), and (0, 0, 1). Using a double integral, find the area of this surface.

2. Suppose E is the solid formed by intersecting the cylinder x2 + y2 ≤ 1 with the planes z = 0
and z = x+ y + 5. Find the total surface area of this solid.

3. Find the surface area of the paraboloid z = x2 + y2 inside the cylinder x2 + y2 = 9.
4. Suppose S is the triangle formed by the plane x + y + z = 1 between the points (1, 0, 0),

(0, 1, 0), and (0, 0, 1).
a) Find

∫∫
S xy dS.

b) Find
∫∫
S〈x, y, z〉 ◦ d~S.

5. Suppose the surface S is the top half of the unit sphere centered at the origin.
a) If the density is given by f(x, y, z) = 2x+ 3y + z, find the total mass of this surface.
b) If ~F (x, y, z) = 〈x2, 0, y2〉, find the flux of ~F across S.
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4.7 Gradient, Curl, Divergence

1. True/False practice:
a) The curl of the curl of ~F is always 〈0, 0, 0〉.
b) The curl of the curl of ~F is never 〈0, 0, 0〉.

2. For the following vector fields, compute the curl and the divergence. Determine whether ~F
is the gradient of some f , and find such a function if possible. Determine whether ~F is the
curl of some function ~G, and find such a function if possible.

a) F (x, y, z) = 〈x2, y2, z2〉
b) F (x, y, z) = 〈sin y, sin z, sinx〉
c) F (x, y, z) = 〈xyz, xyz, xyz〉
d) F (x, y, z) = 〈1, 1, 1〉

3. Show that ∇ ◦ (~F × ~G) = (∇× ~F ) ◦ ~G− ~F ◦ (∇× ~G).
4. Show that any continuous scalar function f(x, y, z) is equal to the divergence of some vector

field.
5. Suppose f(x, y) and g(x, y) have continuous partial derivatives, C is the unit circle oriented

counterclockwise, and D is the region inside the unit circle. If ~n is the unit normal vector for
the unit circle, using Green’s Theorem, it is possible to prove that∫

C
f · (∇g ◦ ~n) ds =

∫∫
D
∇f ◦ ∇g dA+

∫∫
D
f ·
(
∂2g

∂x2
+
∂2g

∂y2

)
dA.

Suppose h(x, y) is a harmonic function, and h(x, y) = 0 for any point on the unit circle. Use
the above fact to show that

∫∫
D |∇h|

2 dA = 0.

4.8 Stokes’ Theorem and the Divergence Theorem

1. Use Stokes’ Theorem to evaluate the line integral
∫
C
~F ◦ d~r where C is the triangle from

(1, 0, 0) to (0, 1, 0) to (0, 0, 1) to (1, 0, 0) and ~F (x, y, z) = 〈x+ y2, y + z2, z + x2〉.
2. Let ~G = 〈z, x,−x〉 and S is the surface of the paraboloid z = x2 + y2 from z = 0 to z = 9

oriented so that the normal vectors point outside.
a) What is the positively-oriented boundary of S?
b) Show that ~G is the curl of something.
c) Use Stokes’ Theorem to calculate

∫∫
S
~G ◦ d~S.

3. Let ~F = 〈y + z, 2x, 2〉 and E is the solid given by the cone y2 = x2 + z2 between y = 0 and
y = 4.

a) What is the positively-oriented boundary of E?
b) If S is this boundary, calculate

∫∫
S
~F ◦ d~S directly.

c) Use the Divergence Theorem to calculate
∫∫
S
~F ◦ d~S.

5 No Calculators during the Exam. Cheat Sheet and Studying for the Exam

No calculators are allowed on the exam. Anyone caught using a calculator will be disqualified from the exam.
For the exam, you are allowed to have a “cheat sheet” - two pages of a regular 8.5 × 11 sheet. You can

write whatever you wish there, under the following conditions:
� The whole cheat sheet must be handwritten by your own hand! No xeroxing, no copying, (and

for that matter, no tearing pages from the textbook and pasting them onto your cheat sheet.) DSP
students with special writing or related disability should consult with the instructor regarding their
cheat sheets.

� You must submit your cheat sheet on Gradescope an hour before the start time of your exam.
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� Any violation of these rules will disqualify your cheat sheet and may end in your own disqualification
from the exam. I may decide to randomly check your cheat sheets, so let’s play it fair and square. :)

� Don’t be a freakasaurus! Start studying for the exam several days in advance, and prepare your
cheat sheet at least 2 days in advance. This will give you enough time to become familiar with your
cheat sheet and be able to use it more efficiently on the exam.

� Do NOT overstudy on the day of the exam!! No sleeping the night before the exam due
to cramming, or more than 3 hours of math study on the day of the exam is counterpro-
ductive! No kidding!

These review notes are copyrighted and provided for the personal use of Spring 2021 Math 53 students only.
They may not be reproduced or posted anywhere without explicit written permission from Prof. Stankova.
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